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Supplementary Figure 1 | Preparation of 3D printable conducting polymer ink. Step 1, 
Stirring and filtration of a pristine PEDOT:PSS aqueous solution; Step 2, Cryogenic freezing of 
the PEDOT:PSS solution in a liquid nitrogen bath; Step 3, Lyophilization of the cryogenically 
frozen PEDOT:PSS solution to isolate PEDOT:PSS nanofibrils; Step 4, Re-dispersion of the 
PEDOT:PSS nanofibrils with a solvent mixture (water:DMSO = 85:15 v/v); Step 5, Mixing and 
homogenization by using a mortar grinder; Step 6, The resultant homogeneous 3D printable 
conducting polymer ink.  
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Supplementary Figure 2 | Rheological characterizations of conducting polymer inks with 
varying PEDOT:PSS nanofibril concentration. a-i, Storage and loss moduli as a function of 
shear stress for conducting polymer inks with PEDOT:PSS nanofibril concentration of 1 wt. % (a), 
2 wt. % (b), 3 wt. % (c), 4 wt. % (d), 5 wt. % (e), 6 wt. % (f), 7 wt. % (g), 8.5 wt. % (h), and 10 
wt. % (i). Shear yield stress for each ink was identified as a shear stress at which shear and loss 
moduli were the same values. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

4 
 

 

 
 
Supplementary Figure 3 | Rheological stability of conducting polymer ink. Apparent viscosity 
(black) and shear yield stress (red) of the conducting polymer ink with 7 wt. % PEDOT:PSS 
nanofibril concentration showed good stability over 40 days of storage at room temperature. 
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Supplementary Figure 4 | Constrained drying and swelling processes of 3D-printed 
conducting polymer structure. a, Constrained drying in thickness direction of a 20-layered 3D-
printed conducting polymer mesh on a glass substrate in ambient condition. b, Swelling in 
thickness direction of the dried 3D-printed conducting polymer mesh in PBS. Scale bars, 2 mm 
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Supplementary Figure 5 | Long-term stability of 3D-printed conducting polymer hydrogels. 
a, Stable 3D-printed conducting polymer hydrogels stored in PBS for 6 months. b,c,  Close up 
view of  the 3D-printed mesh (b) and the overhanging (c) hydrogel structures stored in PBS for 6 
months. d, Cross-section of the 3D-printed conducting polymer hydrogel stored in PBS for 6 
months with stable overhanging structures. Scale bars, 5 mm (a); 2 mm (b, c); 500 µm (d)
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Supplementary Figure 6 | Multi-material 3D printing of MEA. a, Design and printing paths 
for a MEA with 60 electrodes and a culture well. b, Sequential snapshots for 3D printing of the 
MEA based on the conducting polymer ink and the PDMS ink. c, Image of the 3D-printed MEA 
placed next to a commercially-available MEA with the same design fabricated by multi-step 
lithographic processes and post assembly (left). Magnified view of the 3D-printed conducting 
polymer microelectrodes (right). Scale bars, 5 mm (b); 10 mm (c, left panel); 1 mm (c, right panel) 
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Supplementary Figure 7 | Measurement setup for electrical conductivity of 3D-printed 
conducting polymers. Four-point probe setup for electrical conductivity measurement of 3D-
printed conducting polymer in dry-annealed or hydrogel states. 
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Supplementary Figure 8 | Flexibility of 3D-printed conducting polymers. a, Bending of a 3D-
printed conducting polymer (thickness, 17 µm) in dry state with radius of curvature of 65 µm. b, 
Bending of a 3D-printed conducting polymer (thickness, 78 µm) in hydrogel state with radius of 
curvature of 200 µm. Experiments were repeated (n = 5) based on independently prepared samples 
with reproducible results. Scale bars, 100 µm (a); 200 µm (b) 
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Supplementary Figure 9 | CV characterization of 3D-printed conducting polymers at varying 
scan rate. a, CV characterizations of the 3D-printed conducting polymer on Pt substrate at varying 
potential scan rates from 500 to 50 mV s-1. b, Anodic and cathodic peak current densities as a 
function of potential scan rates during the CV characterizations. 
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Supplementary Figure 10 | Young’s moduli map for 3D-printed conducting polymers. a,b, 
Young’s moduli map of a 3D-printed conducting polymer in dry (a) and hydrogel (b) states 
measured by nanoindentation. 
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Supplementary Figure 11 | High resolution, high throughput 3D printing of flexible circuit 
patterns. a, Design and printing paths for circuits. b, Image of 3D-printed conducting polymer 
circuit patterns (108 patterns) on a flexible PETE substrate. Scale bar, 10 mm 
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Supplementary Figure 12 | Multi-material 3D printing of soft neural probe. a, Design and 
printing paths for a soft neural probe with 9 electrode channels and insulating layers. b, Sequential 
snapshots for 3D printing of the soft neural probe based on the conducting polymer ink and the 
PDMS ink. Scale bars, 2 mm 
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Supplementary Figure 13 | Connector-assembled 3D-printed soft neural probe. A multi-
channel connector assembled with the 3D-printed soft neural probe for communication with 
electrophysiology measurement systems. Scale bar, 2 mm  



 
 

9 
 

Supplementary Table 1 | Comparison of various fabrication methods for conducting polymers 

Printing method Resolution Structure 
dimension Multi-material compatibility Fabrication complexity References 

Aerosol printing > 10 µm 2D Yes 
(low viscosity solutions) 

Moderate 
(carrier-sheath gas flow 

systems) 
1-3 

Ink-jet printing > 50 µm 2D Yes 
(low viscosity solutions) Low 4-9 

Screen printing > 200 µm 2D Yes 
(high viscosity solutions) Low 10-12 

Lithography > 10 µm 2D 
Yes 

(lithography-compatible 
materials) 

High 
(masking & etching processes) 13-16 

Electrochemical 
patterning > 100 µm 2D No Low 17-19 

This work > 30 µm 2D or 3D Yes 
(3D printable inks) Low  
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Supplementary Table 2 | Comparison of electrical conductivity for various PEDOT:PSS materials 

Material State Conductivity Preparation method Reference 

PEDOT:PSS + DMSOa Dry 1,500 S cm-1 Spin-coating & post-treatment with DMSO 20 

PEDOT:PSS + EGb Dry 1,330 S cm-1 Spin-coating & post-treatment with EG 21 

PEDOT:PSS + MSAc Dry 3,300 S cm-1 Spin-coating & post-treatment with MSA 22 

PEDOT:PSS + ionic 
liquid Dry 3,100 S cm-1 Spin-coating & post-treatment with ionic liquid 7 

PEDOT:PSS + H2SO4 Hydrogel 8.8 S cm-1 Molding & post-treatment with H2SO4 23 

PEDOT:PSS + ionic 
liquid + PAAcd Hydrogel 0.23 S cm-1 Molding & removal of ionic liquid in water 24 

PEDOT:PSS + ionic 
liquid Hydrogel 47 S cm-1 Spin-coating or lithography & removal of ionic 

liquid in water 16 

PEDOT:PSS + Cu Hydrogel 0.23 S cm-1 Electrogelation & removal of Cu in water 19 

PEDOT:PSS + DMSO Hydrogel 40 S cm-1 Casting & removal of water and DMSO by dry-
annealing 25 

This work Dry & Hydrogel 155 S cm-1 (dry) 
28 S cm-1 (hydrogel) 

3D printing & removal of water and DMSO by 
dry-annealing  

aDMSO: Dimethyl sulfoxide 
bEG: Ethylene glycol 
cMSA: Methanesulfonic acid 
dPAAc: Poly(acrylic acid)
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